
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 4, 283-290 (1984) 

A NATURAL INTERPOLATION FORMULA FOR 
PRANDTL'S SINGULAR INTEGRODIFFERENTIAL 

EQUATION 

N. I. IOAKIMIDIS" 

Chair of Mathematics B', School of Engineering, University of Patras, P.O. Box 1120, 
GR-261 10, Pahas, Greece 

SUMMARY 

Prandtl's singular integrodifferential equation and related equations appear in problems of aerofoil and 
propeller theory in fluid mechanics. Here a natural interpolation formula for the approximation to the 
unknown function of Prandtl's equation when this is solved numerically by the direct quadrature 
method, based o n  the Gauss- and Lobatto-Chebyshev quadrature rules, is proposed. This interpolation 
formula is analogous to Nystrom's natural interpolation formula for Fredholm integral equations of the 
second kind and the corresponding formula for singular integral equations. Numerical applications of 
the same formula are also made. 
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INTRODUCTION 

Prandtl's singular integrodiff erential equation : '** 

where T(x) is the unknown function and B(x)  and f(x) are known functions, is a classical 
equation in fluid mechanics (associated with aerofoils, aircraft wings of finite span and 
propeller theory). The same equation is supplemented by the conditions 

r ( i )  = r(-i) = o (2) 
Derivations of (1) and discussion of its usefulness in engineering applications and its 

restrictions in complicated current problems of aerofoil theory (where more complicated 
integral equations frequently substitute for (1)) can be found in many monographs, e.g. those 
by Van Dyke,3 Ashley and Landha14 and Karamcheti.' In spite of its restrictions, (1) has 
been used in hundreds of papers up to now and it is still in use. 

Among the extensive literature on (l), we can mention a chapter in the classical 
monograph by Muskhelishvili? where further references are reported. In this monograph, a 
method for reducing (1) to a regular Fredholm integral equation of the second kind is 
described. Unfortunately, the resulting equation is too complicated (compared to (1)) to be 
of practical use for the numerical solution of (1) by using the quadrature method for 
Fredholm integral equations of the second kind suggested by Nystrom.' Multhopp' proposed 
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a direct collocation method for the numerical solution of (1) (the classical Multhopp's 
method), based on the change of variables 

t=COST, X = C O S 8  (3) 
and the application of simple properties of trigonometric functions. Multhopp's method is 
also reported by Kalandiya' and Sharfuddin." KalandiyagZ1' and Schleiff" considered also 
the convergence of Multhopp's method under appropriate conditions. On the other hand, 
Rose113 suggested an interesting alternative method of solution of (l), based on a completely 
new (but equivalent) form of it. 

Recently, the author modified Multhopp's method so that it is not based on a change of 
variables (like (3) )  and generalized it to singular integrodifferential equations more compli- 
cated than (1). His results are reported in a paper by him and Theocaris14 and reduce (1) to a 
system of linear equations, the solution of which determines the values of the unknown 
function in (1) at a set of appropriately selected nodes. It is further desirable to approximate 
the unknown function in (1) along the whole interval [-1, 11. In Multhopp's method this is 
made by a trigonometric series based on the solution of the aforementioned system of linear 
equations. This is equivalent to a Langrangian interpolation formula. 

Here we suggest a natural interpolation formula for the approximation to the unknown 
function in (1) along the whole interval [-1, 11. This formula is analogous to Nystrom's 
natural interpolation formula for Fredholm integral equations of the second kind7 (and is 
believed to become as popular as Nystrom's) and is based on the error terms of the 
quadrature rules used for the reduction of (1) to a system of linear equations, exactly as has 
been recently the case for singular integral equations (with Cauchy-type kernels). A natural 
interpolation formula for this class of equations was also proposed by the 

THE INTERPOLATION FORMULA 

Following the developments of Reference 14, we replace the unknown function T(x) in (1) 
by the new unknown function h(x), where 

ryx) = w(x)h(x) 

w(X)=(l-x2)--1'2 

with the weight function 

Moreover, the conditions (2) can be written as 

h ( l ) =  h(-1)=0 (6) 
Now (1) can be written asI4 

We use the Gauss- and Lobatto-Chebyshev quadrature rules (exactly as in Reference 14) 
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respectively (taking also into account (6)), where the nodes 6 and yk are determined by 

“,(ti) = 0 or ti = cos 8,, Oi = (i -0*5)ri/n, i = l (1)n (10) 

u,-,(yk) = 0 Or Y k  = COS 6:, 8: = kriln, k = l(l)(n - 1) (11) 
where Tn(x) and Un(x) denote the Chebyshev polynomials of degree n of the first and the 
second kind, respectively. 

We also take into account the Gauss- and Lobatto-Chebyshev quadrature rules for the 
derivatives of Cauchy-type principal value  integral^'^ 

h(t) ri d w(t)-dt=- C ___ h(‘) +K;,(x)~(x) +K,,,(X)~’(X) dx f’ t -x  n i = l  (ti-x)” 

h(yk) +K~(x)h(x)+KnL(x)h’(x) 

where 14z1 

By taking into account the second of (3), we can see that 

KnG(x) = IT tan n8lsin 8, KnL(x) = -T cot nelsin 8 (15) 

and, furthermore, that 

Next, by differentiating (15) with respect to x (taking always into account the second of 
(3)), we find that 

sin n8 cos n8 cos 8 - n sin 8 
sin3 8 cos2 no 

xU,,_l(x)Tn(x) - n K &  (x) = ri =ri 
(1 - X2)C(X) 

Xun-l(X)Tn(x)+ n 
T - _  - sin n9 cos n9 cos 8 + n sin 8 

sin3 8 sin2 n8 
K;L (x) = - ri 

(1 -x”)’U:-,(x) 

and, furthermore, that (because of (14) and (15)) 

By using (12) and (13) for the approximation to the integral term in (7), we find 

where h,(x) denotes an approximation to h(x), due to the omission of the error terms. By 
multiplying both sides of (20) by KnL(x) and both sides of (21) by KnG(x) and subtracting 
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these two equations, we obtain (after a division by K n L ( x ) - K G ( x ) )  

where (3), (15), (16) and (19) were also taken into consideration. 

into account that 
By applying (22) at the nodes Yk and ti (defined by (11) and (lo), respectively) and taking 

we find 

This is a system of (2n - 1) linear equations in (2n - 1) unknowns for the determination of 
the approximate values of the unknown function h(x)  of (7) at the nodes xi given by 

U2,-,(xj) = 0 or 3 = cos b~/(2n)], j = 1(1)(2n - 1) (26) 

For other values of x, (22) serves as a natural interpolation formula (after the numerical 
solution of the system of linear equations (24) and (25)), that is, 

which is an approximation to the solution h ( x )  of (7) along the whole interval [-1,1]. This is 
the natural interpolation formula suggested here for Prandtl’s singular integrodifferential 
equation (1). 

Furhtermore, we can remark that the system of linear equations (24) and (25) coincides 
with the corresponding system obtained in Reference 14 by a somewhat different procedure 
and a somewhat different notation. Moreover, it is also directly verified ((4), (3, (10) and 
(11) taken into account) that the same system of linear equations coincides with the system 
of linear equations in the method of Multhopps-l0 (with N in Multhopp’s method taken 
equal to 2n - 1). In any case, the contribution of this paper is the suggestion of the natural 
interpolation formula (27); the system of linear equations (24) and (25) is used only for the 
determination of the values of h,,(,(ti) and h,(yk) necessary in (27). 

Now let us write (27) for the approximation r,(x) of the originally unknown function T(x) 
in (1). Then, because of (4) and (9, we find 
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or, equivalently (because of (10) and (ll)), 

rn(zj) = w ( z j ) k ( z i ) ,  j = 1(1)(2n- 1) 

with 
zj = cos t$~/(2n)], j = 1(1)(2n - 1) 

Alternatively, by using the second of (3), we can rewrite the natural interpolation formula 
(28) as 

where 0, and 0; are defined in (10) and ( l l ) ,  respectively, and 

r:(e)=rn(cos e), B*(O)=B(CO~ 01, f*(e)=f(COS el, cos 0 = x  (33) 
On the other hand, Multhopp's interpolation formula, which is a Lagrangian interpolation 

(trigonometric) polynomial, has the 

where 

e;* = j d ( ~ +  I), j = i ( 1 ) ~  (35) 
and PXXe) denotes the corresponding approximation to r*(f3) =r(cos 0). Clearly, as was 
already mentioned, for N = 2n - 1 we have 

r:(e;*) = f;t;(eT*), N = 2n - 1 (36) 
because of the equivalence, under this restriction, of the system of linear equations (24) and 
(25) and the corresponding system of linear equations in Multhopp's method. For this 
reason, we have not used a tilde above r in the right-hand side of (34). 

Of course, in general rX(6) -$. fX(t9) as is clear from a comparison of (32) and (34). In fact, 
in (32) rZ(0) depends on B"(8) and f"(6) for any value of 8, whereas in (34) f%O) depends 
only on the solution of (24) and (25), where the values of B*(8) and f"(0) are taken into 
account only at 0 = fly* 6 = 1(1)(2n - 1)). This is the reason for which (32) (or, equivalently, 
(27) and (28)) is in general expected to give better results than (34) in practice (for 
N = 2n - 1 and the same values of r:(O)). This will be verified in the numerical applications 
of the next section. 

Finally, in the case when a regular term of the form 

r ( x )  = w(t)k(t, x ) h ( t )  df J: (37) 

(where k( t ,  x) is a regular kernel) exists in the left-hand side of (7), the above results remain 
still valid if we replace the right-hand side function f(x) in (7) by 

F ( x )  = f(x> - r ( x )  (38) 
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and we apply the aforementioned quadrature rules to the approximation to r(x) in (20), (21), 
etc. Further similar straightforward generalizations of the above results are quite possible. 

APPLICATIONS 

To test the natural interpolation formula (28) (or, equivalently, (32)) proposed in the 
previous section for the estimation of the unknown function r(x) in (1) along the whole 
interval [-1, 11 and to compare it with the corresponding Lagrangian interpolation formula 
(34) (used up to now for the same estimation), we proceeded to some numerical experiments 
assuming that 

f(x) = B(x) = 1 or f(x) = B(x) = cosh x (39) 
in (1) and taking N =  2n - 1 in (34). We repeat that the approximate values of T(x), rn(zj), 
used both in (28), (32) and in (34) are the same, resulting from the solution of (24) and (25) 
or, equivalently, form the solution of the corresponding system in Multhopp's method.'-'" 
Here we test the performance of the interpolation formulae only (although the errors in 
T,(zj) influence the accuracy of the numerical results). 

The numerical results we obtained (for n =2(1)5, N = 2 n - 1 )  at the points x,,, = 
cos (rnn/ll) (rn = l(1)lO) along [-1,1] are displayed in Tables I and I1 for the two selections 
of f ( x )  and B(x) in (39), respectively. From the numerical results of these tables (presented 
with four decimal digits) we observe their rapid convergence to  the corresponding exact 
values (found for sufficiently large values of n, namely n = 9 and 10). Moreover, what is more 
important here, we observe (having taken into account further decimal digits whenever 
necessary) the superiority of the natural interpolation formula to the Lagrangian one in most 
cases. In fact, the natural interpolation formula is seen to be superior (giving smaller absolute 
errors) to the Lagrangian interpolation formula in seventeen (in both Tables I and 11) out of 
twenty cases. The Lagrangian interpolation formula was found to be superior to  the natural 
interpolation formula only in the remaining three cases (in both Tables I and II), namely for 
(i) n = 2  and x, =*0-654861, (ii) n = 3  and x,=*O.841254, and (iii) n = 4  and x,,,= 
=tO.142315. For n = 5 the natural interpolation formula was seen to be always superior to 

Table I. Numerical results for the unknown function r(x) in (1) (compared with the exact values 
of the same function) for f(x) = B(x)=  1 at the points x, = cos ( m r / l i )  (rn = l ( 1 ) l O ) .  These 
results were obtained by the Lagrangian interpolation formula (34), r, and by the natural 

interpolation formula (28) (or (32)), r, for n = 2(1)5 and N = 2n - 1 

TI11 2V111 3~111  4~111 5 r l l l  
ern l O r r / l l  9~111  8Vl11 7~111  6~111  

x, +0-959493 dz0.841254 k0.654861 +0.415415 =to. 142315 

2 0.2445 0.2689 0.4479 0.4592 0.5872 0.5848 0.6635 0.6592 0.6941 0.6934 
3 0.2611 0.2675 0-;1638 0.4629 0.5909 0.5893 0.6607 0.6611 0.6927 0-6929 
4 0.2662 0.2678 0.4652 0.4643 0.5894 0.5897 0.6609 0.6610 0.6932 0.6932 
5 0.2679 0.2681 0.4648 0.4646 0.5895 0.5896 0-6612 0.6611 0.6932 0.6932 

Exact 
0-6932 values 0,2686 0-4646 0.5897 0.6621 
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Table 11. Similar numerical results to those of Table I, but for f(x) = B ( x )  = cosh x 

Id11 27r/l1 3 ~ 1 1 1  4 d l 1  5 ~ 1 1 1  
8, 107T/11 9n l l l  8 ~ 1 1 1  7 d l 1  6 ~ 1 1 1  

x, t0.959493 *0.8412_54 ztO.65486 1 M.415415 0.142315 

n i; r f r f r f r f r 
~ ~ ~ ~~ ~~~~~~~~~~~~~ 

2 0.3649 0.3929 0.6337 0.6481 0.7640 0.7606 0.7848 0.7781 0.7668 0.7656 
3 0.3861 0.3917 0.6533 0.6525 0.7674 0.7661 0.7798 0.7802 0.7642 0.7644 
4 0.3906 0.3921 0,6546 0.6538 0.7662 0.7664 0.7801 0.7801 0.7647 0.7647 
5 0,3922 0.3924 0.6543 0.6541 0.7663 0.7664 0.7803 0.7802 0.7647 0.7647 

Exact 
values 0.3929 0.6542 0.7664 0.7803 0.7647 

the Lagrangian one. Moreover, as far as the maximum absolute error observed in the 
numerical results of Table I (in all twenty numerical values presented there) is concerned, it 
is E = 0 4 2 4 1  for the Lagrangian interpolation formula and E = 0.0054 for the natural 
interpolation formula. In Table I1 the corresponding values are: E = 0.0280 and E = 0.0061, 
respectively . 

CONCLUSIONS 

The previous results show that in most cases the natural interpolation formula for Prandtl’s 
singular integrodifferential equation gives better numerical results than the corresponding 
Lagrangian interpolation formula used up to now. Of course, in some particular cases the 
contrary takes place (as observed previously) exactly as the trapezoidal quadrature rule for 
the estimation of integrals sometimes gives better numerical results than the corresponding 
Gaussian quadrature rule with the same number of nodes. It is believed that for Prandtl’s 
singular integrodifferential equation the natural interpolation formula will gradually substi- 
tute for the Lagrangian interpolation formula as has been the case for Fredholm integral 
equations for over fifty years’ and for Cduchy type singular integral equations recently.’“-” 
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